Math 53 Discussion Problems Dec 5

1. Evaluate the following line/surface integrals by first converting them into a different form, using Stokes' theorem or divergence theorem.
(a) $\int_{C} x^{2} d x+2 x d y+z^{2} d z$ where C is the ellipse $4 x^{2}+y^{2}=4$ in the $x y$-plane, oriented counterclockwise when viewed from above
(b) $\iint_{S}\left(x^{2} \mathbf{i}+x z \mathbf{j}+3 z \mathbf{k}\right) \cdot d \mathbf{S}$ where S is the sphere $x^{2}+y^{2}+z^{2}=4$
(c) $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$ where S is the oriented surface parametrized by $\mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+\left(9-r^{2}\right) \mathbf{k}, 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi$, $\mathbf{F}=(y-z) \mathbf{i}+(z-x) \mathbf{j}+(x+z) \mathbf{k}$
(d) $\iint_{S}\left(x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}\right) \cdot d \mathbf{S}$ where S is the portion of the cylinder $x^{2}+y^{2}=4$ between the planes $z=0, z=1$, oriented outwards
2. Let C be a simple closed smooth curve in the plane $2 x+2 y+z=2$, oriented counterclockwise when viewed from the positive x-axis. Show that $\oint_{C} 2 y d x+3 z d y-x d z$ depends only on the area of the region enclosed by C in the plane.
3. Among all rectangular solids defined by the inequalities $0 \leq x \leq a, 0 \leq$ $y \leq b, 0 \leq z \leq 1$, find the one for which the total flux of $F=\left(-x^{2}-\right.$ $4 x y) \mathbf{i}-6 y z \mathbf{j}+12 z \mathbf{k}$ outwards through the six sides is the greatest.
